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and 

-a-b< -a-bp+2(Q*t,ffP¥p) 
+ (Q*h LH-ETir+HGpBlQ^t), (C4) 

where we have neglected the possible subtraction terms 
for simplicity. [Usually Eq. (C4) contains fewer sub
tractions than Eq. (C3). When there are infinite 
number of resonances below the Nth threshold, thus 
requiring an infinite number of subtractions in Eq. 
(C3), then Eq. (C3) would no longer be useful.] 

Now, from the exact form of the solution ^ given by 

^=P^P+GPHQ^+Q^ 

= P-N*P+PN*P+Q-NHQ*+QNHQ* 

+G-NHQNHQ*+GNHQ-.NHQ*+Q*, (C5) 

it is possible to construct a function Q-N^t of the form 

Q-NVt=PNVt+Q*t 
= PN^p+QNHQ^t+GNH^NHQ^t+Q^t. (C6) 

Substitution of Eq. (C6) into Eq. (C3) and simplifying 
the resulting expression, one obtains Eq. (C4). The 
calculation is tedious but perfectly straightforward, 
and the following relations prove useful: 

Gp= S-N+G-NHQN+GNH<3-N+QN, (C7) 

a . r L / ^ = a . r L / + (P-N*p-»,HPN*P), (C8) 
aN'bNt=aN'bN

p+ (PNVt,HP„N*p) 
+ (PN*p,£H-ETN^PN*t), (C9) 

QNHG-N=GNHQ-N, (CIO) 

G-N-^N= -G-NHGNHq-N. (Cll) 
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Measurements that are of limited accuracy, are incomplete, or require a finite time to make do not 
generally permit one to construct a wave function for describing a physical system. The use of such partial 
information to predict the results of subsequent measurements is studied here. There are several practical 
applications of this problem, including the use of the autocorrelation function for a particle counter in a 
scattering experiment. 

I. INTRODUCTION 

IT is customary in the pedagogical development of 
quantum mechanics and field theory to mention the 

limitations on correlated measurements of observables 
at different space-time points. Little attention has been 
given, however, to actual experiments for making such 
observations, or their usefulness. In this paper and in a 
subsequent one, we shall discuss both of these subjects 
from a general point of view and with particular appli
cations to scattering processes. 

This work is an outgrowth from a recent paper on the 
correlated counting rate of two detectors recording 
particles scattered from a target.1 There it was shown 
that by such an observation both the magnitude and 
phase of a scattering amplitude can be determined. Such 

* This work was supported in part by the U. S. Atomic Energy 
Commission and in part by a grant from the U. S. Air Force. 

1 M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev. 
132, 2764 (1963). 

an observation of spatial correlations is only one of a 
much broader class of experiments to measure time and 
space-time correlations in a particle beam. For example, 
as we shall show in a subsequent paper, the time-
dependent autocorrelation function for a single counter 
can provide information on the coherence of, say, a 
laser beam.2 If a beam has been scattered, the auto
correlation function yields a measure of relaxation 
processes in the target. 

In this paper we make some general comments on the 
theory of measurement for quantum-mechanical sys
tems and illustrate the theory with some conceptually 
simple examples: (a) measurement of the spin of either 
one of two interacting particles at a time /2 following the 
measurement of the spin of one of them at an earlier 
time tit and (b) the theory of intensity correlations of 
the Hanbury Brown-Twiss variety. 

2 See, for example, C. H. Townes and R. Serber, Quantum 
Electronics (Columbia University Press, New York, 1960), p. 233. 
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II. MEASUREMENT OF TIME CORRELATIONS 

We consider now some general questions pertaining to 
the theory of measurement when several observations 
are made in sequence on a given system. We imagine 
that the system being studied is described by a Hamil-
tonian H and that at time t= 0 it has been prepared in a 
state if/(0) = \po. At any time / > 0 , the undisturbed sys
tem will develop in time according to the Schrodinger 
equation and be described by the state \p(t), where 

yp{t) = e-iHt^. (2.1) 

Suppose now that at a particular time t£>0 an observa
tion is made of the state of the system. As is well known, 
we must interpret the results of this observation in a 
statistical sense.3 We imagine that an ensemble of such 
systems has been prepared at the reference time / = 0 , 
each in state \f/0,

4 and consider a set of measurements on 
the members of the ensemble at a later time t±. 

We begin to describe the results of the observation at 
h in rather loose terms which will be made more precise 
as we proceed. The measurement of some set of observ-
ables for a given system will yield the result that the 
system at time t\ is in a state X corresponding to an 
eigenvector cox (the particular states X are characteristic 
of the observation of interest). If the measurement is 
repeated many times on different systems of the en
semble, we find the state X occurring with probability 
P(\h) given by 

P(M0= (^(0 ,^(0) , (2.2) 

where e\ is the projection operator onto the state X. 
Since the Schrodinger equation is of first order in time 

derivatives, for times t>th the wave function of those 
systems in the ensemble which were found to be in the 
state X is 

l h (0 = Cx e x p [ - f i l ( / - / i ) > x ^ ( 0 
= e x p [ - * # ( * - / 1 ) > x , (2.3) 

where C\ is a normalization constant. Following each 
subsequent observation which may be made on the 
system, new wave functions can be constructed in a 
similar manner. 

This idealized description of a sequence of operations 
seems too restrictive to be of interest for most practical 
applications. For a variety of reasons, observations on 
any but the simplest systems will not determine a 
specific eigenstate. If the measurement involves a 
quantity that has a continuous spectrum, no precise 
determination is possible. Similarly if there is a de
generacy, one can say only that one has some linear 
combination of the degenerate eigenvectors (we return 

3 J. Von Neuman, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New Jersey, 

4 We shall later use a further ensemble average over initial 
states vKO). 
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to this point below). This is related to the case where 
the observation is incomplete in the sense that only a 
fraction of all dynamical variables characterizing the 
system are ordinarily observed. Thus, the fact that a 
particle in a counter is within a certain macroscopic 
volume at a certain time may be determined—its momen
tum and spin orientation often not being observed. 
There is no difficulty in describing such partial observa
tions on \f/(h); one again merely constructs the projec
tion operators for the given observation and lets these 
act on \p{ti) to predict the results of the measurements 
over the ensemble. I t is only when one wishes to use the 
results of an incomplete measurement at time h to 
predict the outcome of subsequent observations at time 
h that the theory becomes somewhat subtle. 

I t is conventional to say that a measurement takes 
place at a particular time t\. In practice, any mechani
cal or electrical equipment has a finite response time; a 
signal recorded at time h is a filtered response of im
pulses received at times earlier than t±. I t may not be 
possible to define precisely sequential observations on a 
system or even the intervals between such measure
ments. This difficulty is particularly acute when there is 
an inherent reason for requiring prolonged observation. 
For example, suppose we wish to first measure the 
energy and then the spin orientation with respect to an 
arbitrary axis of a particle with a magnetic moment 
placed in a magnetic field. If the time interval between 
the measurements were quite long, there would be no 
problem and the simple theory reviewed above would 
apply. The principle of complementarity, however, 
would preclude the simultaneous determination of both 
quantities. In the intermediate (and often more prac
tical) case in which the second observation follows the 
first by an (effectively) finite time, the simple theory 
does not seem to apply. 

Let us suppose that an instantaneous observation is 
made on a given system in the ensemble at a time /i. The 
observation is that of the physical characteristic associ
ated with the (Hermitian) operator J\. Since in general 
Ji does not represent a complete set of commuting 
operators for the system, observation of J\ does not 
yield a precise specification of the state of the system. 
The set of operators that must be added to Ji to make 
the customary complete set will be called 0. 

We assume that the operators ( / i ,0) have a complete 
set of eigenvectors <a. The eigenvalues of J\ will be 
called (3\ and we write 

/ICOX./X^/SXWX.M, ( 2- 4) 

where the o)\tfl are the eigenvectors corresponding to the 
eigenvalue fi\; the index /j, may run over a fixed set of 
values characterizing the degeneracy of the eigenvalue 
(3\. I t is a postulate of the theory of measurement that 
the observation made on the system will yield one of the 
eigenvalues p\ as the numerical value of the physical 
property associated with Ji. (For ease of writing we 
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frequently refer to both the physical property and the 
operator associated with it simply as J\. We also speak 
of that physical property and the operator as "having 
the value fi\" when we mean in a more strict sense that 
the observed state is one for which J\ has the eigenvalue 
/3\.) Because the observation is incomplete, as a result 
of the observation we can only say that at time fa, the 
system lies in the subspace of the projection operator E\ 
given by 

£ \ = Z ) ^X.M^A.MV (2.5) 

where the sum runs over all n satisfying Eq. (2.4) with 
X fixed. 

We now come to the fundamental question: To what 
extent do those portions of the wave function that are 
"not observed" remember their heritage? There are 
certainly circumstances in which all memory of the 
state prior to the measurement are eased, in which case 
we would say that the wave function ^x(^i) is given by 

^xOi) = S ^M^X.M? (2-6) 

where the aM are arbitrary, except for the normalization 
condition. Measurements that have such a drastic effect 
on a system seem to be rather poorly suited for meaning
ful sequential observations. To illustrate this, let us 
imagine that the wave function \[/ describes energetic 
particles scattered by a small target. Ahead of the 
target is placed a counter to monitor the incident beam 
and to determine the precise time at which each particle 
is scattered. The scattered particles are detected by a 
counter telescope, so designed that each scattered 
particle entering the telescope is counted by each of a 
sequence of single counters in the telescope. Now, the 
observation of a count at time fa in the first detector of 
the telescope provides information concerning the mag
nitude and direction of the counted particle (since it 
traveled in a known time from the target to the tele
scope). This knowledge is incomplete, however, since the 
spin orientation is not observed. In spite of this, it is 
obvious that the available information permits one to 
predict the time of passage of the particle through the 
remaining counters of the telescope. Equation (2.6) 
would not permit us to make this prediction, however. 
By erasing the information that the particle had 
traveled to the telescope from the target, it is not 
possible even to predict that the direction of its velocity 
is such that it will pass through the remaining counters. 
We must conclude, therefore, that with arbitrary a^ 
Eq. (2.6) cannot take account of information that may 
be available from previous observations on the system. 

Another possible way of specifying what one means 
by a partial measurement of a system might be to 
require that, since one is measuring J\ which commutes 
with the other operators 0 , the expectation value of the 
O's should be the same before and after the measure
ment. This cannot be a generally correct conclusion. 

Consider the measurement of the square of the total 
angular-momentum operator P. I t is clear that a 
measurement of the z component of the angular momen
tum Jz immediately afterward must give zero proba
bility for eigenvalues of Jz>j, where j(j+l) is the 
eigenvalue of J2 given by the first measurement, whereas 
before the measurement this would not generally be the 
case. Thus, even though J\ and 0 commute, the values 
taken by the 0 may be influenced by a measurement 
of JL 

I t is not clear that there is a universal answer to the 
question posed above—that is, to what extent does 
previous information persist after a new observation is 
made? We shall tentatively adopt here an answer to this 
question, which we state in a physically appealing form 
suggested to us by Wigner.5 This is an assertion that, 
subject to whatever constraints are imposed by the 
observation of Ji at time fa, the wave function yf/\(fa) is 
that which provides maximum overlap, 

O=l(*x(* i ) ,* (0) l 2 , (2.7) 

with the prior wave function \p(ti). That is, we consider 
the statement that 0 be maximized with respect to 
variations of i/% subject to those constraints imposed by 
the observation at fa, as a variational principle to deter
mine \p\(fa). This principle is interpreted as applying 
also to the case that J\ represents a set of observables 
and to the case that the observation is of limited 
accuracy, from which it can be determined only that the 
system is in some domain of states.6 

We shall call this the principle of least interference. To 
see how it is to be applied in a given situation, we return 
to the precise observation of a single observable J\, as 
described by Eq. (2.4). Using the most general form 
(2.6) for ip\(fa) compatible with the observed eigenvalue 
jSx, we obtain from Eq. (2.7) 

0 = L ^*^(cox(M^(/i))(^(^i),cox(,), (2.8) 

where 

Ek, l 2=i- (2.9) 

On varying, say, the a^* to maximize 0, we obtain 

0 = £ SaM*[(L <hN,)N*-nar], (2.10) 
At v 

where rj is a Lagrange multiplier introduced to satisfy 
Eq. (2.9) and 

tf,«(*(*iW). (2.11) 

6 E. P. Wigner (private communication). The results of this 
paper had been obtained previously by a related argument. 

6 E. P. Wigner (Ref. 5) suggested the term "morally best" as 
applying to measurements for which 0 is a maximum. With poor 
experimental technique, one can presumably excessively disturb 
the system being studied and degrade his information (for 
example, one might accidentally blow up the laboratory). 
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From Eq. (2.10) we obtain 

1 

7) v 

and from Eq. (2.9) we obtain 

Thus, we have 

a,= N//Z a*N*= (u>x,„^ i ) ) (E a*N*)->, 
v v 

so that 
^x(/i) = Z) ^/i^x,M 

= CxExiK*i). (2.12) 

Here £ \ is defined by Eq. (2.5), and Cx is a normaliza
tion constant defined by the equation 

| C x M = ( * ( * i ) , W * i ) ) 
^ P ( X A ) , (2.13) 

where P(\,fa) is just the probability that a system in the 
ensemble will have the value /3\ for J\. 

For times t>fa, the wave function \f/\(t) for the system 
has the form7 

lh(/) = Cx e x p [ - i f f ( / - / i ) ] £ x ^ ( / i ) . (2.14) 

As an extreme illustration of the use of ^x (t) defined 
by Eq. (2.14) for subsequent measurements at times 
t>fa, we imagine that \p describes two completely 
independent systems, each in separated laboratories, 
isolated from each other. An observation made on one 
of these, call it our Jh evidently does not influence the 
second system. This is precisely what our prescription, 
Eq. (2.14), says since E\ acts as the identity operator 
on the variables of the second system. 

In Sec. I l l we give some less extreme examples to 
show the plausibility of the prescription, Eq. (2.14), at 
least for an important class of measurements. 

Now at a later time fa> fa we observe a quantity J 2 on 
those members of the original ensemble of systems for 
which 7 i was found to have the value /5x at time fa. Since 
J2 does not necessarily commute with J\ we must expect 
in general to supplement J\ with a new set of commuting 
observables 0 ' in order to have a complete specification 
of states. The eigenvalues of J\ will be called bi, and the 
eigenvectors wittn, so that 

J2'Wi,m=:biWitm, (2.15) 

and the index m is the range of values characteristic of 
the degeneracy of bi. The projection operator onto the 
subspace of the complete Hilbert space that corresponds 

7 The form of \j/\{t) given by Eq. (2.14) has been proposed by 
E. P. Wigner, Am. J. Phys. 31, 6 (1963), and independently by 
ourselves in connection with the development given in Ref. 1. See 
also Albert Messiah, Quantum Mechanics (North-Holland Pub
lishing Company, Amsterdam, 1963), p. 199. 
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to the eigenvalue bi is 

&l=*£ Wl,mWl,J , (2.16) 
m 

with the sum extending over all states for which the 
eigenvalue of J2 is bi, 

The probability that on the second observation at 
time fa the value of J2 will be bi is 

P(lM\t2)=(Mt2),Sfa(t2)). (2.17) 

Evidently, the joint probability over the ensemble that 
J1 has the value fi\ at time fa and that J2 has the value 
bi at time t2 is 

P(l,t2;\td = P(l,t2\\h)P(\h), (2.18) 

where P(\fa) is given by the expectation value of Ex in 
the state ^(/i) , Eq. (2.13). I t is clear that similar con
siderations could be made for the observation of a third 
observable Js at a time fa> fa 

To write Eq. (2.18) out in detail, it is convenient to 
introduce Heisenberg operators, 

J2(r) = eiHTJ2e~iHr, 

etc. Then, using Eqs. (2.14) and (2.17), we obtain 

P(lM\h)= |Cx |2(^(/ i) , ExSl(fa-fa)Ex^(fa)). 

This and Eq. (2.13) permit us to write Eq. (2.18) as 

P(l,h; X , 0 = (1K/1), ExSi(h-h)Ex$(td) 
= (*(0), £x(Of t ( /2- / i )£x( / i )^ (0) ) . (2.19) 

The complete distribution function, Eq. (2.18), de
scribing the values of J± at time fa and J2 at time fa is 
generally difficult to measure. A simpler measurement 
is that of the average value of J'2, given that the first 
measurement of Ji yielded the eigenvalue /3\ for the first 
observable, Ji. This implies that we calculate the mean 
value of J2 at time fa for those members of the original 
ensemble which were found to have the value 0x for J\ 
at time fa. Thus we compute 

< / 2 ( / 2 ) > X = ( ^ x ( / 2 ) , / ^ x ( / 2 ) ) 

= |Cx| 2 ( * ( 0 , £x/2(*2-/iXExiK*i)), (2.20) 

where we have used the definition of \p\(fa) given by 
Eq. (2.12). The correlation function for the two observa
tions is then defined as the quantity 

</2(fe)/l(*l)> 

= E MxP(/,*2;X,/i) 

=H(Uh))rfxP(\h) 
X 

= £ ( * ( ' l ) , £x/2(/2-/l)0x£xlK*l)) 
X 

= £ ( * & ) , ExJ2(fa-fa)JiE^(fa)) 
x 

= (*&), C £ ExJ2{h-fa)E{]J*p{fa)) 
X 

= (*o, [ E Ei(h)Uh)E,(h)yi(h)+o)- (2.21) 
X 
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We have here used the fact that J\ commutes with E\ 
and have introduced the Heisenberg operators E\(h) 
and Ji(h). I t should be noted that Ji(h) may be placed 
on either side of the square bracket in the last two 
expressions of Eq. (2.21), as must be the case if 
(J2(h)J2(h)) is to be real. 

In deriving the final form of Eq. (2.21) we have sup
posed that the sum on / extends over all possible values. 
The sum on X may or may not extend over all values 
depending on the details of the observation. 

The case in which Ji(h) and J 2^2) commute is 
evidently of special interest. We may then think of 
making a single observation of both Ji(h) and J 2^2)^ 
The correlation function (2.21) simplifies considerably 
in this case, particularly if we sum over all states X. 
Since ^2(^2) and E\(ti) commute, we obtain just 

</2(fe)/i(*i)>= (HQ)Mh)Ji(tiMO)), (2.22) 

which is consistent with thinking of J2(h)Ji(h) as being 
a single observable. 

We mentioned earlier that under many conditions the 
observations made on a system may be too inaccurate 
to determine specific eigenvalues of such observables as 
J1 and J% In this case Eq. (2.21) must be modified. For 
example, if the only information obtained from the first 
measurement is that the value of J\ is one of a set s(\) 
of eigenvalues ($\, we introduce the projection operator 

X 

where the sum on X extends over the set s(\). We again 
make the fundamental assumption of least interference 
and obtain [on following precisely the argument leading 
to Eq. (2.14)] 

*.<x>(0 = Cx ' e x p [ - ; # ( ; - 0 ] £ S ( X ) \ K ' i ) - (2.23) 

The arguments leading from Eq. (2.14) to the final form 
of the correlated measurement (J2^2) J 1(h)), Eq. (2.21), 
are now modified by replacing Ex by Es(\). We find in 
place of Eq. (2.21) the result 

= ( * o , [ E £ . ( x ) ( ^ W £ . ( X ) W ] / i ( * o ) , (2.24) 
s(X) 

where the sum runs over nonoverlapping sets s(X). 
When the ensemble of systems is not in a pure state 

at t=0, but distributed over a set of states, we must 
perform a further ensemble average over the ^0 in 
Eq. (2.21) or (2.24). For example, Eq. (2.24) is then 

</2(fe)/l(*l)> 

= T r { p o , [ E ^ ( X ) ( 0 / 2 f e ) E s ( x ) ( 0 ] / i ( 0 } , (2.25) 
«(X) 

where po is the density matrix for the ensemble at 2=0. 
I t is this latter form which we shall require in a subse
quent paper for the description of scattering experiments. 

Returning now to Eq. (2.21), let us imagine that J2 
was measured at a time /2 prior to th the time at which 
J1 was measured. In this case the appropriate correla
tion function would evidently be 

(Jl(h)J2(t2)) 

1 

= (*o, CE &i{h)WdW%)y&*)**). (2.26) 
I 

When we wish to consider both kinds of observations, 
it is convenient to introduce the time-ordered correla
tion function defined by 

<r [ / , ( / 2 ) / i ( / i ) ]>=( r [ / 1 (0 /2 ( /2 ) ]> 
= (Ji(h)Ji(h)), for t2>h, 

= </i(/i)/2(*2)>, for h>h. (2.27) 

We note that when Ji(h) and J 2^2) commute, and the 
sum on / in Eq. (2.26) runs over all states, Eqs. (2.19) 
and (2.26) are identical. In this case neither observation 
interferes with the other, so the order in which these are 
made is irrelevant. 

We have mentioned that because of the delayed 
transient response of all electrical and mechanical 
apparatus, the recorded observation will not correspond 
to an instant of time, but will be smeared over an 
interval. Our expressions for the correlated measure
ments must be corrected for this before they will 
correspond to the recorded observations. To do this, let 
us suppose that the basic observation of / 1 is relayed to 
the recording device via a linear transducer having the 
response function L\{r). By this we mean that an input 
signal f{tr) be registered as 

Ou tpu t^ / dt'Liit-Ofit'). 
j —00 

The corresponding response function for J2 is written as 
L2(T). We may therefore represent the two measure
ments by the "filtered operators" 

<*TlLl(<l-Tl)Jl(Ti) 
-00 

and (2.28) 

d r 2 £ 2 ( * 2 — T 2 ) / 2 ( T 2 ) , 
-00 

where the Heisenberg operators Ji and J2 continue to 
correspond to "instantaneous observables.'' 

Application of the principle of least interference to the 
observation of these quantities may be less than 
straightforward. First, the technical problem of formu
lating the correct constraint associated with the observa
tion of, say, $1, may be formidable. Second, when 
\t-j— h\ is less than the transient response tiniQ Ar$ of 



B924 M . L . G O L D B E R G E R A N D K. M . W A T S O N 

Transducer and 

data analyzer 

Recorder 

)Probe^ 

1 

Auxiliary 
recorder 

System 
FIG. 1. Illustration 
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the measuring apparatus, so that T\ and r2 extend over 
overlapping intervals in Eq. (2.28), the mutual inter
ferences of the two observations can be difficult to 
describe. 

There are several special cases, however, for which 
observation of the two quantities (2.28) may be easily-
discussed. The simplest is that for which the response 
time Ard of the detector, or measuring apparatus, is 
much less than the relaxation time of the system being 
studied. As long as \t2~h\ is significantly larger than 
Ard, this is in effect an instantaneous observation to 
which we can apply the theory developed above. In 
particular, we may use Eqs. (2.14), (2.18), and (2.21) 
with the understanding that in these equations the 
operators J\ and J2 are to be replaced by $i and §2. Be
cause we have assumed that Ard is smaller than the 
relaxation time of the system, we may take the projec
tion operators E\ and Si to be unmodified by the tran
sient response. Then the correlation function corre
sponding to Eq. (2.21) or (2.27) may be written in the 
concise form 

G12^(32(h)$l(h)) 

dT2L2(t2—r2) I driLi(ti~ri) 
-00 «/ —00 

X<r[/2(T2)/l(Tl)]>, (2.29) 

where the time-ordered correlation function was defined 
by Eq. (2.27). 

A second special case to which the principle of least 
interference may be easily applied is the following. The 
fundamental observations on the system are made by 
probes, as in Fig. 1, which have response times very fast 
compared with relaxation times in S. This information is 
degraded, however, by narrow-bandwidth transducer 
recorders; so the detector response time Ard may be 
larger than \t2—h\ and system relaxation times. We 
assert that in spite of this we can again represent the 
measured correlation of the two observations by 
Eq. (2.29). 

The reason for this is that we might have used fast 
recorders in parallel with the narrow-band devices and 
have recorded (say on a piece of paper) the quantity 
(rj^/2(r2)/i(ri)3). The integrations implied in Eq. 
(2.29) could then be done numerically. The final result 
must agree with that recorded by the narrow-band 
device. 

As a third and somewhat more complicated example, 
let us suppose that we are observing particles scattered 
by a specific target and that we are interested in observ
ing relaxation processes in this target. The relaxation 
times in the target will be characterized by the 
interval Art, while fluctuations in the particle beam 
itself will have a characteristic time Ar&. We shall sup
pose that the experiment has been so designed that 

AT6«AT<K<AT* , (2.30) 

where Ard again represents the response time of the 
detector. I t is evident from the double inequality (2.30) 
that we can filter out the high-frequency beam fluctua
tions and observe only those of the target. The response 
functions Li and L2 in Eq. (2.28) are assumed to describe 
the effect of these filters. 

Equation (2.29) may be used to describe the correla
tion function for this experiment. To see this, we note 
from the first inequality (2.30) that during a single re
sponse time Ard many scattered particles will be de
tected. Thus, random fluctuations in the particle fluxes 
will be small and for an ensemble average the $'s and 
/ ' s will be equivalent. 

The fourth example that we consider is of some 
inherent complexity. We suppose that we are specifically 
studying fluctuations in a beam of scattered particles, 
but that we are unable to build a detector that can meet 
the condition Ard^CAr/, where AT/ is a characteristic 
period of the fluctuations being studied. In this case we 
construct a composite detector, as illustrated in Fig. 2. 
At the center of the detector is placed a small scatterer 
s, having known scattering properties. Particle counters 
are mounted on the walls of the detector, which are a 
large distance from s. This "large distance" is defined by 
the condition that the particle-flux operators J2(r2) 
and JI(TI) at any pair of counters commute. 

The beam of particles is first scattered at the target 
J1, which is the system being studied. Some of these will 
enter the detector and be rescattered at s into counters 
on the walls. To analyze this experiment, we treat the 
beam, target, and scatterer 5 as a dynamical system 
described by the Schrodinger equation. The counters on 
the walls are considered to be the "classical" portion of 
the measuring apparatus, since their particle-current 
operators commute. With this arrangement we can 
study space-time correlations on a scale determined by 
the small scatterer s, but use only "classical" detectors. 

To see this, let us first replace the instantaneous 

Detector 

FIG. 2. Analysis 
of a scattering ex
periment. 
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particle-flux operators J\ and J\ by the filtered operators 
<Ji(*i) and g%(h) in Eqs. (2.4), (2.5), (2.15), and (2.16). 
The filtered flux operators are supposed to represent the 
actual characteristics of the counters used in the 
detector. Because of the explicit time dependence, we 
shall now write the projection operators (2.5) and (2.15) 
as E\(h) and Si{t^), respectively. Since #i(/i) and $2(^2) 
commute, we have 

C5i(^i)^x(/i)]=C^i(0^z(fa)] 

= [Si( '2),£x(*i)]=0. (2.31) 

The wave function in the Heisenberg representation, 
following a specific observation of the two commuting 
quantities Si(h) and $2(^2) is [according to Eq. (2.12)] 

hx(0) = CaSl(h)Ex(h)to, (2.32) 

since the two observations commute. Here 

1/1 Czx12=P(l,h; X,*i) = GfrAfa)SifaVo) (2.33) 

is the joint probability over the ensemble of systems 
of finding that $i(/i) and $2(^2) have the respective 
eigenvalues (3\ and bi. The correlation function for this 
observation is [compare Eqs. (2.21) and (2.22)] 

< & ( * 2 ) 5 I ( 0 > = E M A P ( / , * 2 ; X , * I ) 

= T.(mMh)3i(h)Ex(h)i(0)), (2.34) 
X 

where in the last step we have summed over all /. Now 
if we either sum also over all X or if the operator J\ 
satisfies the condition (which in fact is ordinarily satis
fied for particle detectors8) 

Ji(h)E^t1) = J1(h)i (2.35) 

we obtain 

Gl2=<&(*2)5l&)> 

dT2L2(t—T2) I dTlLi(t-Tl) 
-00 " —00 

X(m,Ut2)MhM0)), (2.36) 

which is equivalent to Eq. (2.29) for this case. In a 
subsequent paper we shall show how Eq. (2.36) may be 
used to study the target T of Fig. 2. 

We now describe some simple illustrations of the 
general theory developed in this section. 

III. EXAMPLE OF TWO COUPLED SPINS 

We consider a system of two nonidentical spin-J 
particles interacting through a spin-spin force described 

8 The information obtained from a count is that a particle is in 
the counter. If this is the case, E\ (t\) is unity. If no particle is in 
the counter, E\(ti) and Ji(ti) both vanish. Thus, we obtain 
Eq. (2.35). 

by the Hamiltonian 

H=a.(Jv(T2' (3*1) 

The parameter a may depend on the distance between 
the particles, but we shall not be concerned with this 
here. The eigenstates of H will be called X0 and 
X v(^=l , 0, - 1 ) where 

HXQ= (~3QI)XO^EQXO, 

and (3.2) 

Hx
v=aX

v^ElX
v. 

At any time /, the state of the system is described by 

i//(t) = e~iEQta0X0+e-iEltavX\ (3.3) 

Projection operators for particle 1 to have its spin 
parallel or antiparallel to the z axis are 

£±«> = A(l±<r*(1)), (3.4) 

where az
(1) is the usual Pauli spin operator for particle 1. 

Suppose now we measure at a time h the operator E +
( 1 ) 

and then at a later time /2 the operator E_ (1 ) . In the 
notation of the previous section, we have J i = £ + ( 1 ) and 
J2=EJ1). We have then for </2(*2)/i(*i)> the result 

(J2(h)Ji(h))={e~iH^^m+^mi\ 
EJVe-

iH^-^E+^rP(h)). (3.5) 

I t is obvious by inspection that in the limit h —> h we 
have (J2(h)Ji(h)) —> 0, which is physically reasonable, 
since the first measurement forced the spin of particle 1 
to be up, and surely we must require this to be true just 
after the measurement. The complete expression for 
(J2(fa)Ji(h)) is easily evaluated and we find 

</2(fe)/i(/i)>=i I aQ exp[-;£0 / i]+<x° e x p [ - t E ^ J | 2 

Xsm2J[(JEi-Eo)(*2-*i)] . (3.6) 

Considerations based on this same physical system 
of two coupled spins serve to clarify further some of the 
remarks made in connection with our basic prescription 
for the wave function following a partial measurement, 
Eq. (2.12). In particular, the effect on operators not 
measured in the first instance (called 0 in Sec. II) may 
be studied by imagining first forcing the spin of particle 
1 into a definite state, say spin up, so we take for Jh as 
before E+

(1\ and then ask for the expectation value over 
the ensemble of the z component of particle 2 at a later 
time. In such a case we have J2=cz

("2), and invite our
selves to consider 

< / 2 ( / 2 ) / l ( 0 > 

= (e-
iH^-^E+^(h), az^e-iH^-tl)E+^(h)). 

We find, after an elementary calculation, 

= I a112- JI a0 expl-iEot{\+a0 e x p [ - i E ^ i ] | 2 

X c o s ( £ i - E 0 ) ( * 2 - * i ) . (3.7) 
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In the limit as h—*t\ this quantity is in general dramati
cally different from the expectation value of az

{2) in the 
state ^(/i) before the measurement, namely, 

( c r .<«>=(^ ( / i ) ^ ( 2 ¥(0 ) 

- 2 Re{a0*a° e x p [ f ( E 0 - £ i ) / J } . (3.8) 

Thus, there is no question that (0) before the measure
ment of Ji is equal to (0) afterward, even in situations 
that are not slightly pathological, as was our example in 
Sec. I I of measurements of J2 and Jz. 

In spite of this example we maintain that our descrip
tion of consecutive measurements is the reasonable one. 
To see this we consider now a situation where we start 
off our system of two spins in the triplet state for which 
/ a = + l, i.e., both spins up. We take for the operator 
Ji the projection operator E+n

a), where 

£*(1> = £ ( l+<r ( 1 ) -d ) , (3.9) 

and it is a unit vector [n~ (sin# cos<£, sin# sin$, cos0)] 
and for J% the projection operator E+

(2) = J(l+cr^ ( 2 )). 
First, we find the probability P(2 f | lit) that particle 2 

has its spin up at time t2 when it was found that at time 
h particle 1 had its spin parallel to n. According to 
Eq. (2.17) this is 

P ( 2 | | M ) = (X1, ^ ( 1 ) £ +
( 2 ) ( / 2 - ^ l ) £ n ( 1 ) X 1 ) ( c O S p ) - 2 , 

which is easily evaluated to give 

P ( 2 ! | M ) = cos2|<9 

+ sin2j6'cos2[-|(£r • £ o ) ( * 2 - / i ) ] . (3.10) 

In this case the orientation of spin 2 is not immediately 
affected by the measurement of the orientation of spin 1. 
That is, the probability of finding the second spin up 
just after the measurement is unity, as we would expect 
intuitively. 

The correlation function (2.21) is found in this case 
to be 

</2(fe)/l(*l)> 
= cos2!Ccos2i0+sin2j0 cos2K-Ei-£o)(fc-*i)]. (3.11) 

As h approaches h, we find cos2J# as the value of the 
correlation function. This is simply the probability that 
the initial spin of particle 1 is to be found along the 
direction H. 

For the general state, 

V (̂̂ i) = ao exp£—iE0ti~]X0 

+expZ-iElt{\(a"x1+a°x0+a~1x~1), (3.12) 

the correlation function (£+
(2)(/2)£+n (1)(^i)) is given by 

where 

6 ( 0 6 e-** 
¥ = cos- | cos -^+s in a0 

2 1 2 2 v2 

Be** 1 
-sin a0exp[i(Ei—EQ)t{]\ , 

2v2 J 

° = - j a°+cos0ao e x p p ( £ i - £ o ) / i ] 

(3.14) 

+sin0—a l-\-smd arl \ , 
v2 2 ) 

&o=expp(E0—Ei)t{]/2\ cos0a°+ao expp(Ei—E0)£i] 

p}4> 

— sin0—c^+sntf arl\ , 
V 2 yfl J 

and the special case quoted above, Eq. (3.11), corre
sponds to the vanishing of all a's except a1, which is 
unity. In general, therefore, the observation of the 
orientation of spin 1 with respect to the axis n has an 
instaneous effect on the state of the second spin. With 
the interpretation of an observation as making a selec
tion among members of an ensemble, this is in no sense 
surprising. 

IV. CORRELATED INTENSITY MEASUREMENTS 

In this section we apply the principles introduced in 
Sec. I I to a problem described by Fano9 as an illustration 
of the Hanbury-Brown and Twiss intensity correlation.10 

Fano considers a physical system composed of four 
atoms—a, b, c, and d. At the beginning of the experi
ment, corresponding to time t=0, the two identical 
atoms a and b are each in an excited state. During the 
course of the experiment, a and b undergo radiative 
transitions to their respective ground states. Fano 
calculates the probability that the radiation from a and 
b will photoionize both atoms c and d. Even in the limit 
of a small probability that either atom is ionized, the 
probability that both are ionized does not reduce to the 

FIG. 3. Illustration of 
Fano's problem. 

* U. Fano, Am. J. Phys. 29, 539 (1961). 
10 R. Hanbury-Brown and R. Q. Twiss, Proc. Roy. Soc, 

+i I bo e x p [ - i E 0 * 2 ] - & ° e x p [ - f J S i / 2 ] 12 , (3.13) (London) A242, 300 (1957); A243, 291 (1957), 

(E+^(h)Eln^(t1))=\¥\2 
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"classical" product of the probabilities of ionizing the 
atoms individually. 

The experiment is illustrated in Fig. 3. Atom a is 
located at position z0, b is at z&, etc. The distances Rab, 
Rac, etc. between atoms are assumed to be very large 
compared with the wavelength of the emitted radiation. 
In the interest of later geometrical simplifications we 
assume that Rai and Rcd are much less than Rac, etc. 
Also, to avoid irrelevant complication we ignore all 
details of the atomic processes of radiation and absorp
tion, lumping these effects in unevaluated constants. 
(The reader who desires a detailed account should refer 
to Fano's paper.) Finally, we shall suppose the "radia
tion" emitted by either atom a or b to be a particle 
satisfying Bose-Einstein, or Fermi-Dirac statistics. The 
energy of such a particle will be called e(k), correspond
ing to a momentum k. If the particle is a photon the 
energy is e(k) = kc; for a particle of rest mass m we take 
e(k) = k2/2m. The energy liberated by the radiative 
transition and converted into kinetic energy of the 
emitted particle is written as €o. 

The wave function for the particle radiated by atom 
a is of the form11 

*«(x,/) = 
iy r dzk exppk- (x—z«)] 

(2TT)27 e(k)-e0+i(T/2) 

X { e x p [ - i e ( f t ) / ] - e x p [ - i ( € 0 - i ( r / 2 ) ) 0 } . (4.1) 

Here x is the coordinate of the radiated particle, 1/T is 
the lifetime of the atomic transition, and 7 is a constant 
that is proportional to the probability amplitude for the 
transition. We have ignored the spin, if any, of the 
radiated particle in Eq. (4.1), which for our present 
argument is an inconsequential idealization. 

In the limit that |x— za\ is large, we readily obtain 
from Eq. (4.1) 

$o(x,/) = 0 for |x— za\>vt, 

iyp 
$ a(x,0 = —; - e x p { i [ | x - z a | ^ - € ( ^ ) / ] } 

|x—z0|fl (4.2) 

Xexp — KH1"-1} for |x—za | <vt, 

where e(^) = €o and v=de(p)/dp. An expression similar 
to Eq. (4.2) describes the radiation emitted by the atom 
b at z&. 

To describe the radiation emitted by both a and b} we 
introduce the wave function12 

* ( 0 = ( l /v5) [$ a (x 1 , / )$ 6 (x 2 , 0±$ a (x 2 , ^ & (x 1 , 0 ] , (4.3) 

11 See, for example, M. L. Goldberger and K. M. Watson, 
Collision Theory (John Wiley & Sons, Inc., New York, New 
York, 1964), Sec. 8.2, Eq. (8-119). The derivation of our Eq. (4.1) 
assumes T<<Ce. 

12 Strictly speaking, the wave function (4.3) should also be 
symmetrized in the atomic coordinates and wave packets con
structed to describe the localization of the atoms near za and z&. 
As long as these wave packets do not overlap this symmetrization 
is of course irrelevant, since it has no effect on our calculations. 

where xi and x2 are the coordinates of the two emitted 
particles, and the + or — sign is to be used if the 
radiated particles satisfy Bose-Einstein or Fermi-Dirac 
statistics, respectively. 

Following Fano's analysis, we might now calculate 
from Eq. (4.3) the probability that atom c absorbs a 
radiated particle at time fa and atom d absorbs the other 
particle at time fa. To do this in detail, we should have 
to evaluate the transition amplitudes for absorption. 
We shall avoid this complication by doing a slightly 
different calculation. 

To describe this, let us first imagine enclosing the 
atoms c and d in the respective very small volumes bVc 

and bVd- We shall then find the probability P(d,fa; c,fa) 
that one of the radiated particles is in 8VC at time fa and 
that the other particle is in bVd at a later time fa. The 
probability that these particles are actually absorbed 
may be obtained from P(d,fa; c,fa) on multiplication by 
the respective probabilities of absorption, given that 
that the particles are in bVc and bVd-

To evaluate P(d,fa; c,fa) from Eq. (2.19) we must first 
construct the projection operators Ec and 8d~ Ed, which 
vanish unless a particle is in bVc or bVd, respectively. 
Then from Eq. (2.19) we obtain 

P(dfy; cyfa)-(HO),Ec(fa)Ed(fa)Ec(fa)^(0)). (4.4) 

The projection operators Ec and Ed may be con
structed in terms of the projection operators 

x i ) = / ^ 3y5(xi- • y ) s 

(4.5) 

«d(xi)= / d 3 y5(x 2 -y) , 

etc., where the integrals extend over the volumes 8VC 

and 8Vd, respectively. Then, we have 

Ee=ee(xi)+ec(x2) 

and (4.6) 

Ed=ed(x1)+ed(x2). 

To see that these are projection operators, we note that 

Ec
2 = ec (xi)+ec (x2) + 2ec (xi)gc (x2). 

Because we have assumed that the volumes 8VC and 
8Vd are very small, the term 2£c(xi)ec(x2) here is 
negligible when it appears in the integrand of Eq. (4.4). 

In the Heisenberg representation, the operators (4.5) 
are of the form 

^c(xi,0 = expp£Ti^ c(x1) exp[—iHit], 

ec(x2,0 = exppF^]e c(x2) exp[—iH2t~], 
(4.7) 

etc., where Hi and H2 are the respective Hamiltonians 
for the radiated particles 1 and 2. Since these particles 
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do not interact, we have for any times h and h, 

[ec(x!,/i), ec(x2,/2)]=0, 

lec(xhh), ed(x2,/2)] = 0, 
etc. 

Using the commutation relations (4.8), we obtain 

Ec (h)Ed (h)Ec (h) = ec (xht)ed (x2,/2) 
+ec(x2,t1)ed(xht2)+small terms. (4.9) 

The "small terms/' which we shall neglect, are of the 
form 

ec(xhh)ed(xht2)ec{x2yti), etc., 
and 

ec(xhti)ed(xht2)ec(xhti), etc. 

Such terms all correspond to passage of a given particle 
through both volumes 8VC and 8Vd. In the limit of small 
8VC and 8Vd, and assuming that these are not precisely 
in line with either radiating atom, these terms are 
negligible.13 

Neglecting the "small terms," then, and using Eqs. 
(4.9) and (4.3) in Eq. (4.4), we immediately obtain 

P(d,t2',c,h) 

= J <Pyi f d"y2l^(yhh)^a(yhh)^(y2M)My2,t2) 

±$a*(yi J / i )^ & (y i^ i )$ & *(y 2 , / 2 )$a(y 2 , / 2 ) 

± * 6 * ( y i , / i ) * a ( y i , 0 * « * ( y 2 , ^ 6 ( y 2 , f e ) ] . (4.10) 
13 Such terms would not appear in Fano's calculation, since his 

particles are absorbed and cannot subsequently reach the second 
term. 

Since we have assumed that 8VC and 8Vd are very small, 
we may evaluate this as 

P(d,t2;c,h) 
= 8Vc8Vd2(yp/RH)2 

X e x p [ - r 0 2 - (R/v))2 e x p [ - r 0 x - (R/v))-] 
X{l±cos£p(Rad-Rbd+Rbc-Rac)l}. (4.11) 

Here we have set R~Rad~Rbd~Rbc~RaC in all but the 
oscillating term. 

Equation (4.11) corresponds to Fano's result. It 
illustrates the mutual interference of the two absorption 
processes, even in the limit of a vanishing probability 
[i.e., 8VC, 8Vd—-»0] for absorption. This is closely re
lated to the Hanbury-Brown and Twiss experiment10 

and to the scattering experiment proposed in Ref. 1. We 
note that expression (4.11) is symmetric in fo and h and 
so is valid for all values of h and h. This is a consequence 
of our use of very small volumes 8VC and 8Vd. 

In the second paper of this work we shall be concerned 
with practical applications of the phenomena studied 
here to scattering experiments. We shall, for example, 
describe corrections to Eq. (4.11) for finite sized volumes 
8VC and 8Vdj corresponding to counters used in a 
particle beam. We shall also discuss fluctuations and 
the autocorrelation function for a single-particle 
counter. 
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